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A B S T R A C T   

Low-cost sensors (LCS) can construct a high spatial and temporal resolution PM2.5 network but 
are affected by environmental parameters such as relative humidity and temperature. The data 
generated by LCS are inaccurate and require calibration against a reference instrument. This 
study has applied nine machine learning (ML) regression algorithms for Plantower PMS 5003 LCS 
calibration and compared their performance. The nine ML algorithms applied in this study are: (a) 
Multiple Linear Regression (MLR); (b) Lasso regression (L1); (c) Ridge regression (L2); (d) Sup-
port Vector Regression (SVR); (e) k- Nearest Neighbour (kNN); (f) Multilayer Perceptron (MLP); 
(g) Regression Tree (RT); (h) Random Forest (RF); (i) Gradient Boosting (GB). The comparison 
exhibits that kNN, RF and GB have the best performance out of all the algorithms with train scores 
of 0.99 and test scores of 0.97, 0.96 and 0.95 respectively. This study validates the capability of 
ML algorithms for the calibration of LCS.   

1. Introduction 

PM2.5 exposure affects more humans globally than any other air pollutant and caused 4.2 million deaths, i.e., 7.6% of global deaths 
in 2015 and is the 5th leading risk factor for death (Forouzanfar et al., 2016; Cohen et al., 2017; WHO, 2018). PM2.5 measurement is 
significant for the formulation of air pollution control measures, policies and frameworks to counter the potentially damaging effects 
on humans and climate change. For example, the National Clean Air Program (NCAP) launched by GoI to monitor and control PM 
emissions in Indian cities (Ganguly et al., 2020). There are two primary methods to measure PM2.5 viz. Federal Reference Methods 
(FRM) and Federal Equivalent Methods (FEM) (Noble et al., 2001). FRM requires a gravimetric method where particle mass con-
centration is determined by weighing the filters before and after the sampling period as a measurement technique. FRM is the most 
accurate method and is widely used by regulatory bodies. However, there are certain disadvantages of the FRM, such as it is not a 
real-time form of measurement and only provides a 24-h average. FRM also has a high operation cost, has manual process involved and 
lacks portability (Ayers et al., 1999; Le et al., 2020; Noble et al., 2001). Beta attenuation monitor (BAM) and tapered element 
oscillating microbalance (TEOM) are two standard FEM. FEM have a higher temporal resolution, i.e., provide 1-h average and have 
relatively low operational cost compared to FRM but have high installation cost (Ayers et al., 1999; Chung et al., 2001; Le et al., 2020). 
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PM2.5 concentration is mostly organized spatiotemporally and thereof; the concentration and exposure can vary notably even in the 
nearby areas. The FRM and FEM cannot be installed in large numbers to create a dense network of high spatial resolution due to the 
lack of portability and high installation as well as operational cost. Low-cost sensors (LCS) can be a possible alternative and can be 
installed in large numbers to construct a high spatial and temporal resolution PM2.5 network (Di Antonio et al., 2018; Bulot et al., 
2020). LCS are cost-effective compared to FRM/FEM and can collect real-time data, i.e., minute resolution. LCS are compact, 
light-weight, portable and require low maintenance. However, there are certain shortcomings associated with using LCS which need to 
be addressed before being used extensively. LCS are based on laser light scattering (LLS) technology and uses a light beam to estimate 
the concentration based on the light scattered by particles passing through an air stream (Badura et al., 2018) instead of measuring 
their mass concentration or counting particles directly (He et al., 2020). Aerosol composition and size distributions, meteorological 
conditions such as relative humidity (RH) and temperature (T) can significantly influence the performance and accuracy of LCS (Rai 
et al., 2017; Badura et al., 2018; Zheng et al., 2018; Loh & Choi, 2019; Bai et al., 2020; Chu et al., 2020; Qin et al., 2020; Zusman et al., 
2020). In high RH conditions, the aerosol particles absorb water and change the size, morphology, refractive index etc., known as 
hygroscopic growth (Lee et al., 2008), which regulates the amount of light scattered and so the particle concentration. The critical 
reason for RH and T’s inclusion while calibrating the LCS with an FRM/FEM is the difference in operational RH and T of these in-
struments during measurement. FRM/FEM instruments generally operate at normal conditions (T: 20–23 ◦C, RH: 30–40%), while the 
LCS measures data in ambient conditions, which can cause disagreement in reported concentrations (Malings et al., 2020). The PM2.5 
concentration from the LCS alone is not adequate to explain the disparity in the LCS measurements (Zheng et al., 2018) and so RH and 
T are the crucial parameters for the LCS calibration (Lee et al., 2020). Also, the introduction of RH and T in the calibration model 
significantly improves the accuracy and can account for up to 17% and 7% variation in the PM2.5 measurement reported by the 
low-cost sensor respectively which aids in achieving the highest accuracy possible (Chen et al., 2018; Gao et al., 2015; Jiang et al., 
2021; Lee et al., 2020; Lin et al., 2018; Rai et al., 2017; Zheng et al., 2018). 

Therefore, even though the cost of LCS is an advantage compared to FRM/FEM, the accuracy of concentration reported by the LCS 
is questionable (Li et al., 2020) and can vary concerning site/season due to change in environmental conditions. So, the LCS requires 
rigorous calibration against a reference instrument to account for RH and T’s effect to meet regulatory instruments standards. Although 
LCS manufacturers develop calibration factors for the sensors but in laboratory conditions, which is not the same as the site where the 
sensor is installed and so the calibration factors become incompetent. So, it is vital to re-calibrate the sensors at the installation site to 
report accurate concentrations (Badura et al., 2018; Di Antonio et al., 2018; Bulot et al., 2020; Si et al., 2020). Besides, LCS may also 
require developing multiple calibration models specific to site or season and regular calibration to ensure accuracy of the particle 
concentration reported (Miskell et al., 2018; Zheng et al., 2018). Due to this, calibration of LCS manually can be hectic and is not a 
feasible option and some sophisticated models need to be developed. The calibration models have to be highly accurate and efficient in 
terms of time and computational power with the ability to handle large datasets (Wang et al., 2020). Machine learning can play a 
crucial role in this due to the wide range of algorithms for various kinds of datasets and applications. 

So far, many statistical techniques such as Gaussian Process regression (GPR) and simple/multiple linear regression (Badura et al., 
2019; Zheng et al., 2019; Si et al., 2020; Patra et al., 2021) have been implemented for calibrating the LCS with the reference in-
struments. A limited number of studies have also applied machine learning (ML) algorithms such as k-nearest neighbours (Loh & Choi, 
2019), support vector machines (Loh & Choi, 2019; Wang et al., 2020), artificial neural network (Badura et al., 2019; Si et al., 2020), 
decision tree (Wijeratne et al., 2019), random forest (Loh & Choi, 2019; Wang et al., 2019, 2020) and gradient boosting (Johnson et al., 
2018; Loh & Choi, 2019; Si et al., 2020). The problem with ML models is that they can suffer from overfitting. Overfitting is when the 
model learns the training data too well and provides a high train score but lower test score. Overfitted models are unable to perform 
accurately on new datasets and cannot be generalized. One way to overcome overfitting is to train multiple ML algorithms of a wide 
range and working principles and evaluate their performance to find the most appropriate model for the problem. No attempts have 
been made previously to apply a range of ML algorithms for LCS calibration. 

The following objectives are addressed in this paper: (a) to investigate the performance of Plantower PMS 5003 LCS compared to 
Thermal Fisher Scientific SHARP model 5030 as a reference method for measurement of PM2.5 at Alberta, Canada (Si, 2019) and (b) 
evaluate and compare the performance of nine ML algorithms for calibration of LCS. The nine ML algorithms applied in this study are: 
(a) multiple linear regression (MLR); (b) Lasso regression (L1); (c) Ridge regression (L2); (d) support vector regression (SVR); (e) k 
-nearest neighbour (kNN); (f) multilayer perceptron (MLP); (g) regression tree (RT); (h) random forest (RF); (i) gradient boosting (GB). 
The predicted values from all the algorithms are compared with the LCS and reference instrument measurements and each other. 

2. Methodology 

2.1. Data 

The Plantower PMS 5003 LCS is evaluated in this study and measures PM2.5, RH and T. The Thermal Fisher Scientific SHARP model 
5030 is used as a reference instrument to evaluate the LCS. The data used in this study (Si, 2019) was collected at Calgary Region 
Airshed Zone (CRAZ) in Calgary, Alberta, Canada from December 7, 2018 to April 26, 2019 at an interval of 6s. The data was 
aggregated to derive the hourly concentrations. The exact sampling method, details of instruments, and the data pre-processing 
techniques applied can be found in Si et al. (2020). 
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2.2. Algorithms 

Regression is a powerful and fundamental statistical technique in machine learning and finds its application in economics, psy-
chology, geography, and so forth (Sammut & Webb, 2011; Mendenhall & Sincich, 2014). Regression analysis is the study of depen-
dence or relation between random variables of interest and infers mathematical functions to explain their behaviour, known as 
regression models (Rawlings et al., 1998; Mendenhall & Sincich, 2014). Regression analysis requires two types of real-valued variables, 
target/dependent and independent represented by y and x respectively. The objective of regression is to map a function such that y = f 
(x) + ε, where ε is the error (Kroese et al., 2019; Zaki & Meira, 2020). The cases in which there is more than one independent variable 
are known as multi-regression, where the equation transforms to y = f (x1, x2, x3, …, xn) + ε, where (x1, x2, x3, …, xn) ε x. In this study, 
we have three independent variables viz. PM2.5, temperature, and relative humidity from the LCS represented by PM2.5_LCS, T, and RH 
respectively and one target variable, PM2.5 from the reference instrument represented by PM2.5_REF. The regression algorithms applied 
in this study attempt to estimate functions to explain the effect of temperature and relative humidity on the measurement of PM2.5 from 
the LCS to calibrate it with the reference instrument measurements. Mathematically, the objective function is PM2.5_REF = f (PM2.5_LCS, 
Temp, RH) + ε. Nine different ML regression algorithms were applied in this study which is discussed briefly below. 

2.2.1. Linear models 
Linear regression (LR) is the simplest regression model as it involves only one independent variable and assumes a linear function 

(straight line) between x and y (Bishop, 2006; Mendenhall & Sincich, 2014). The objective of LR is to fit a line (y = w. x + b, where b is 
the bias/intercept and w is the slope/weight) to a set of data points (x) to predict future values of y for given values of x, known as best 
fit line (Mendenhall & Sincich, 2014; Rawlings et al., 1998). The slope and intercept can be calculated using equations (1) and (2) 
respectively. 

w =
SSxy

SSxx
=

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2 =

∑n
i=1xiyi − nxy

∑n
i=1x2

i − n(x)2 (1)  

b = y − w . x (2)  

where x and y is the mean of x and y respectively and n is the sample size. The deviation between the actual (yact) and predicted (ypred) 
value of y is known as error. LR applies the least square error criterion to find out the best fit line. The best fit line is the one where the 
sum of the errors (SE) is zero and the sum of the squares of the errors (SSE) is minimum (Mendenhall & Sincich, 2014). SSE is the cost 
function (CF) of LR. SE and SSE can be calculated using equations (3) and (4) respectively. 

SE=
∑n

i=1

(
ypredi − yacti

)
=

∑n

i=1

(
w. xi + b − yacti

)
(3)  

SSE =
∑n

i=1

(
ypredi − yacti

)2
=

∑n

i=1

(
w.xi + b − yacti

)2 (4) 

Multiple linear regression (MLR) is an extended version of LR and involves more than one independent variable. In MLR, the 
objective is to find the best-fit plane instead of line and the equation broadens to the form of y = b + w1 x1 + w2 x2 + w3 x3 + … + wn xn, 
where x1, x2, x3, …, xn are the independent variables and (w1, w2, w3, …wn) ε w are the respective weights and w is the weight vector 
(Kroese et al., 2019; Mohri et al., 2018; Zaki & Meira, 2020). The method of fitting for MLR is identical to LR. 

Fig. 1. Bias-variance dilemma (Fortmann-Roe, 2012; Hastie et al., 2009).  
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For regression, the trained model’s error can be fragmented as the sum of error due to variance and error due to bias, known as bias- 
variance decomposition. Generally, mean square error (MSE) is used to quantify the prediction error which is equivalent to the sum of 
variance and squared bias, as seen in equation (5). The bias component describes how the average predicted value differs from the 
mean of actual values. In contrast, the variance component explains predicted values’ inconsistency for a given data point from 
different models (Bishop, 2006; Fortmann-Roe, 2012; Hastie et al., 2009; Sammut & Webb, 2011). 

MSE(x)= E
[
(f (x) − y )

2]
= (E[f (x)] − y)2

+E
(
f (x) − E

(
(f (x) − E(f (x)))2))

= bias2 + variance (5) 

A high bias suggests that the model does not fit the data well and incorporates more assumptions about the target variable whereas 
a low bias means the model made fewer assumptions. A high variance value reflects random noise in the training data while a low value 
suggests predicted values close to each other. A high bias value causes low variance in order to reduce the model error according to 
equation (5), which leads to a phenomenon known as underfitting. In underfitting, the model cannot capture the underlying trend 
between dependent and independent variables and neither performs well on the training nor the test set, producing high prediction 
error for both. Increasing the model complexity reduces training error but too much training increases variance on the cost of bias 
causing overfitting in which the model adapts to the data too well. Overfitted models do not generalize well on other datasets and 
produce low training but comparatively larger test errors. There is a constant trade-off between bias and variance to find the optimum 
value in order to get the least model error possible, known as bias-variance dilemma as illustrated in Fig. 1 (Bishop, 2006; For-
tmann-Roe, 2012; Hastie et al., 2009; Sammut & Webb, 2011). 

Regularization is a technique to control overfitting which discourages the regression weights from reaching large values by 
decreasing the variance at the expense of increasing the bias slightly. Regularization adds a penalty term to the cost function depending 
on the weights’ norm (Bishop, 2006; Flach, 2012; Hastie et al., 2009; Kroese et al., 2019). Two different regularization techniques are 
applied in this study Lasso (L1) and Ridge (L2) have subtle but significant differences. Lasso applies the L1 (Manhattan/Taxicab) norm 
while Ridge applies the L2 (Euclidean) norm. Due to this, L2 regression weights may remain small but still non-zero, while L1 favors 
sparse model and drives many weights to zero acting as a feature extraction method, especially in the case of multi-regression (Bishop, 
2006; Flach, 2012; Hastie et al., 2009; Zaki & Meira, 2020). The regularized cost function’s for L1 and L2 are in equations (6) and (7): 

CFL1 =
∑n

i=1

(
w.xi + b − yacti

)2
+ λ |w| (6)  

CFL2 =
∑n

i=1

(
w.xi + b − yacti

)2
+ λ w2 (7)  

where λ (≥0) is the regularization constant. λ controls the trade-off between the regularization and SSE components of the regularized 
cost function. When λ = 0, there is no regularization and the model will have low bias and possibly high variance. However, if λ →∞, all 
the weights would tend to zero producing a low variance and high bias overfitted model. Varying the λ estimates the best balance 
between bias and variance for an optimal predictive model. A small positive value of λ always guarantees a solution (Bishop, 2006; 
Flach, 2012; Hastie et al., 2009; Mohri et al., 2018; Sammut & Webb, 2011). L1 and L2 are simply LR with a normed cost function and 
so the method of fitting remains the same. Further details about these techniques can be found in Rawlings et al. (1998), Bishop (2006), 
Hastie et al. (2009), Mendenhall and Sincich (2014). 

Support Vector Regression (SVR) is a powerful and robust modeling technique in ML. SVR follows the same paradigm of finding a 
function that fits the training data well to minimize the prediction error as discussed in LR but with specific crucial differences. SVR 
attempts to construct a tube of width ε > 0 (user-specified) around the regression function and treats deviations outside the margin as 
noise. A small value of ε may lead to a tube that does not enclose the entire data, while a very high value would mean that outliers are 
the only points that define the regression equation and produce an insignificant prediction model. SVR tries to minimize the absolute 
error instead of SSE as in LR (Bishop, 2006; Gunn, 1998; Hastie et al., 2009; Mohri et al., 2018; Yang, 2019). SVR implements a loss 
function known as ε-insensitive loss defined as: 

Lε(y)=
{

0 for |w . x + b − y | < ε
|w . x + b − y| − ε otherwise (8) 

Due to the ε-insensitive loss function, only the deviation of points outside the tube contributes to the final error. The deviation of 
points inside the tube is ignored in the optimization. The points on the border of the tube and outside are known as support vectors as 
they support the regression line. The ε -insensitive loss function reduces the risk of overfitting as large outliers have a restricted effect 
on the regression equation. Mathematically, the optimization problem for SVR can be written as: 

min
w,b

1
2
||w||2 + C

∑n

i=1
|yi − (w. xi + b)| (9)  

subject to the constraints: 
{

yi − w. xi − b ≤ ε
w. xi + b − yi ≤ ε (10)  
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where C > 0 is the penalty parameter that controls the trade-off between amount up to which deviation greater than ε are tolerated and 
flatness of the regression model (tube) (Clarke et al., 2009; Gunn, 1998; Kuhn & Johnson, 2013; Witten & Frank, 2005; Yang, 2019). 
More details on the derivation and implementation of SVR can be found in Gunn (1998), Clarke et al. (2009), Kuhn and Johnson (2013) 
and Yang (2019). 

2.2.2. k-Nearest Neighbour regression 
k- Nearest Neighbour (kNN) is a simple and easy to implement learning-by-memorizing-based ML algorithm. kNN is developed on 

the assumption that similar things exist near each other and can be applied for regression and classification. kNN does not create any 
stringent abstractions about the data’s underlying structure. Instead, it merely memorizes the training data and predicts the value for 
new instances based on the closest samples. kNN algorithm is a five-step process: (a) select distance metric; (b) select number of nearest 
neighbours (k < n); (c) compute distance from other data points to desired point; (d) sort the points in increasing order of distance; (e) 
compute the average of k nearest neighbours’ responses. Euclidean distance is the most commonly used metric for regression, although 
some other metrics are available (Hastie et al., 2009; Kuhn & Johnson, 2013; Sammut & Webb, 2011; Yang, 2019). For a p dimensional 
and n sample size data, the Euclidean distance between two points with attribute values a1, a2, a3, …, ap and b1, b2, b3, …, bp can be 
calculated using equation (11) and the value of response variable for new instance can be calculated using equation (12): 

Euclidean Distance=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a1 − b1 )
2
+ (a2 − b2 )

2
+ (a3 − b3 )

2
+ ...+

(
ap − bp

)2
√

(11)  

ynew(xnew)=
1
k

∑

i ∈k (xnew)

yi (12)  

where k (xnew) is the set of k nearest neighbours of xnew. k decides the accuracy of the model and so choosing the optimal value of k is of 
critical significance. A minimal value of k pulls few data points for accurate estimation and becomes sensitive to noise in data accepting 
high variance in predictions that may lead to overfitting. While a very high value of k may include irrelevant data points that are not 
actual neighbours and increases the bias at the cost of variance, reducing the model’s accuracy. kNN is also known as lazy algorithm as 
it is computationally expensive and significantly slower for large datasets since it needs to compute and sort the distances for the entire 
training dataset every time to find the nearest neighbours. This makes kNN inappropriate for scenarios where rapid predictions are 
required (Hastie et al., 2009; Kuhn & Johnson, 2013; Sammut & Webb, 2011; Yang, 2019). 

2.2.3. Multilayer perceptron 
Multilayer Perceptron (MLP) is a feed-forward (connections between nodes do no form loop) artificial neural network (ANN). The 

primary computing device of MLP is perceptron, a mathematical model of a neuron. MLP is a network of connected perceptrons 
organized in a layered formation. Each perceptron possesses an activation function and weights for each input. The objective of MLP is 
to learn these weights from the data such that the prediction accuracy is optimized. MLP consists of one input and output layer and can 
have more than one hidden layer. 

The working mechanism of MLP is straightforward and can be summarized as a five-step process: (a) initialize the input data and 
random but small weights; (b) train the network in the forward direction and predict the output; (c) calculate the cost/error (MSE is 
used mainly for regression); (d) backpropagate the error and update the weights accordingly; (e) repeat the steps (b) and (c) until the 
error is marginal (Kroese et al., 2019; Kubat, 2017; Shalev-Shwartz & Ben-David, 2014; Yang, 2019; Zaki & Meira, 2020). MLP’s are 
effective modeling techniques and can deal with several kinds of data. MLP falls into deep learning, a set of ML which deals with neural 
networks and is extensive. The mathematical derivations associated with training of the network and backpropagation of error are 
beyond the scope of this paper and can be found in Shalev-Shwartz and Ben-David (2014), Kubat (2017) and Yang (2019). 

2.2.4. Tree-based models 
Tree-based models are among the most popular ML models due to their iterative divide-and-conquer nature and have its root in the 

data structure. They are easy to implement and efficient but are computationally intensive. The tree-based model constructs a set of 
highly interpretable logical (if-then) conditions by recursively partitioning the decision space into smaller subspaces using training 
data and presents the decision process in the form of a tree graphically. They implicitly perform feature selection and can be applied for 
both regression and classification on datasets with large numbers of cases and/or variables (Flach, 2012; Hastie et al., 2009; Sammut & 
Webb, 2011; Yang, 2019). 

There are numerous techniques for constructing a tree. However, here we follow the procedure of constructing the regression tree 
(RT) from one of the most utilized frameworks called classification and regression trees (CART) of Breiman et al. (1984). For a 
regression problem, the entire training dataset (D) is initially at the tree’s root node and specific logical tests are conducted. The test 
partitions the data into two group (D1 and D2), one with the values satisfying the test and remaining to the other such that the overall 
SSE is minimized: 

SSE =
∑

i ∈ D1

(

yi − yD1

)2

+
∑

j ∈ D2

(

yj − yD2

)2

(13)  

where yD1 
and yD2 

are the mean of the training set predictions for D1 and D2 respectively. The process is repeated until convergence 
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criteria are met and no more splits are possible. The last nodes of the tree are called decision nodes (or leaves) and contain the predicted 
value for the target variable (Bishop, 2006; Hastie et al., 2009; Kuhn & Johnson, 2013; Sammut & Webb, 2011; Yang, 2019). 

Bagging (short for bootstrap aggregating) and boosting are two popular ensemble learning techniques (models that combine the 
output of multiple models) in ML. The main idea behind bagging and boosting is constructing multiple decision trees and combining 
their predictions by averaging (in regression) or voting (in classification) to reduce variance and increase prediction accuracy. The 
difference is that bagging creates individual trees and assigns equal weight to all trees. Contrary to that, in boosting the new trees are 
influenced by the previous ones’ performance and assigns weight based on the trees’ performance (Bishop, 2006; Hastie et al., 2009; 
Sutton, 2005; Yang, 2019). Two ensemble techniques used in this study viz. Random Forest (RF) and Gradient Boosting (GB) are 
extensions of bagging and boosting respectively. The detailed discussion of these algorithms is beyond the scope of this paper but can 
be seen in Sutton (2005), Hastie et al. (2009) and Yang (2019). 

3. Results and discussion 

3.1. Evaluation of LCS measurements 

LCS measurements under ambient conditions are affected by high relative humidity (RH) and sensitive to temperature (T). The 
comparative analysis of PM2.5 measurements of LCS (PM2.5_LCS) and reference instrument (PM2.5_REF) indicates a high variation in 
measured values, sometimes almost double when the value is above 10 μg/m3. For values less than that, the values are closer 
comparatively. The mean(±sd), minimum and maximum values measured by reference instrument are 6.57(±5.57), 0.00 and 38.87 
respectively, while for LCS the values are 9.89(±12.09), 0.03 and 77.8. The statistical performance parameters between PM2.5_REF and 
PM2.5_LCS are calculated and presented in Table 1. 

This drift produced in the LCS measurements is due to the variation in RH or T and sometimes a combination of both, as shown in 
Fig. 2. The reference instrument’s measurements are not affected by RH and T due to a drying system. Some other environmental 
parameters might also be affecting the LCS measurements but we are ignoring them in this study due to lack of data. The objective is to 
calibrate the PM2.5_LCS with the PM2.5_REF that incorporates RH and T’s effect and reduce the measurements’ variance. In this study, we 
have applied nine ML regression algorithms to calibrate the LCS. 

Table 1 
Statistical performance parameters between PM2.5_REF and 
PM2.5_LCS.  

Parameter PM2.5_REF vs PM2.5_LCS 

R2 0.74 
MSE 72.24 
MAE 4.95 
Slope 1.86 ± 0.02 
Intercept − 2.38 ± 0.17  

Fig. 2. Effect of relative humidity and temperature on LCS PM2.5 measurements.  
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3.2. Calibration results 

To understand the regression algorithms’ capabilities applied in this study, the trained models need to be tested on new data 
(unavailable to the model) to check the model’s performance. The entire dataset was split into two parts: train and test (70/30). The 
entire pipeline is divided into two steps: parameter optimization and training/prediction. In parameter optimization, a grid search was 
performed to infer appropriate parameters for the data with ten cross-fold validation for all the models simultaneously. The second step 
comprises applying the parameters derived from parameter optimization and comparing the results obtained by the models, which is 
discussed below. 

3.2.1. Linear models 
L1 and L2 models are producing the same result as MLR. A regularization constant (λ) of 0.01 and 0.1 was applied in L1 and L2 

models respectively inferred through grid search. SVR model was trained on ε = 0.2 and penalty parameter (C) = 1. Out of four linear 
models, MLR, L1 and L2 have a low train (0.78) and test score (0.75) and only SVR is producing a high train (0.97) and test score (0.94). 
The linear models except for SVR, i.e., MLR/L1/L2, have reduced the mean (6.63 ± 5.03) and maximum (35.62) values of LCS 

Fig. 3. Scatter plot of PM2.5_REF and values predicted from (a) MLR/L1/L2, (b) SVR.  

Fig. 4. Scatter plot of PM2.5_REF and values predicted from (a) MLP, (b) kNN.  
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measurements close to the range of reference instrument measurements but are unable to provide an accurate prediction as can be seen 
in Fig. 3(a). Along with the train and test scores being low for these models, the MSE (7.00) and MAE (2.02) is low compared to actual 
values but is high compared to other models and vice-versa for R2 (0.77). The weights of PM2.5_LCS, RH and T are 0.46, − 0.11 and 
− 0.03 respectively, and the bias is 7.94. 

This is a case of under-fitting where the model cannot completely identify the underlying relation between independent and 
dependent variables distribution. The regularization techniques also cannot handle the complexity of the problem and do not show any 
improvement compared to MLR. On the other hand, SVR exhibits high train and test scores and a higher R2 between actual and 
predicted values than its siblings. But higher MSE (1.29) and MAE (0.66) sometimes almost double compared to the values of other 
algorithms such as kNN (0.31) and GB (0.29). SVR can also fit the line to the data without getting sensitive to outliers, as illustrated in 
Fig. 3(b). 

3.2.2. Multilayer perceptron 
MLP model’s train (0.87) and test (0.85) scores are higher than MLR, L1 and L2 but lower than SVR. The MLP was trained with three 

Fig. 5. Scatter plot of PM2.5_REF and values predicted from (a) RT, (b) RF, (c) GB.  
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hidden layers of size five each and tanh as activation function and some other peripheral parameters. The MSE (4.13) and MAE (1.54) 
between the model’s predicted and actual values are relatively high compared to some models. The R2 (0.87) value is significantly low 
compared to other algorithms. The predicted data is still susceptible to outliers, as shown in the scatter plot in Fig. 4(a). MLP can be 
extremely powerful if trained regressively and more accurate models could be produced. We acknowledge that the model could not be 
trained with more hidden and deep layers due to computational competency. 

3.2.3. k- Nearest Neighbour 
kNN is building a very accurate model with train and test scores as high as 0.99 and 0.97. The kNN model was trained for k = 2. The 

model’s accuracy decreases on increasing the value of k. The MSE, MAE and R2 values for kNN are 0.5, 031 and 0.98, respectively. The 
model’s prediction and actual values can be fitted by a line that explains their relationship without getting affected by outliers/noise in 
data, as illustrated in Fig. 4(b). 

3.2.4. Tree models 
All three tree-based models produce quality results with train scores of 1.00, 0.99 and 0.99 and test scores of 0.93, 0.96, and 0.95 

for RT, RF and GB, respectively. RT, RF and GB are trained with trees of maximum depth 28, 15 and 5 respectively. RT is producing the 
best train score. However, the difference between train and test scores for RT (0.07) is higher compared to RF (0.03) and GB (0.04). RT 
is capable of overfitting as they apply greedy algorithms due to which sometimes the optimal tree cannot be found. This is a case of 
overfitting. The RT model is learning the training data too well and cannot be generalized. RF and GB are capable of fixing the 
overfitting issue of RT, as seen in this case. The scatter plots for RT, RF and GB can be seen in Fig. 5(a), (b) and (c) respectively. The data 
points for RF and GB are closer to the fit line compared to RT. The MSE (0.61) for RT is higher compared to RF (0.49) and GB (0.45) but 
MAE (0.22) is lower than RF (0.4) and GB (0.29). The R2 value is in the same range. RF and GB are providing the best results on all 

Fig. 6. Comparison of (a) train and test scores, (b) MSE, (c) MAE, (d) R2 for the nine ML regression algorithms.  

Fig. 7. Comparison of computation time for the algorithms.  
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parameters. 
A comparison of the train and test scores (R2) for the models is presented in Fig. 6(a). The MSE, MAE and R2 between actual 

(PM2.5_REF) and values predicted from the models were compared and are presented in Fig. 6(b), (c), and (d) respectively. The MSE is a 
measurement of goodness of fit. Lower MSE means a lower error or better fit. The overall evaluation and comparison of all the nine 
regression algorithms exhibit that kNN, RF and GB are the best-suited LCS calibration models. 

3.2.5. Comparison of computation time 
Another predominant parameter that dictates the real-time application of a calibration methodology is the time taken to train the 

calibration model. Since the calibration methods applied in this study are in two stages, the computation time is also segregated 
accordingly and is presented in Fig. 7. The less complex computational models have their parameter optimization time of less than 10 
min. For more complex high-end ML algorithms, the parameter optimization time is around 20 min, with SVR (22.35 min) taking the 
most time. The training time is closer to 5 s for almost all the algorithms except SVR taking 8.63 s. The prediction time is less than 2.5 s 
for all the algorithms. The evaluation of computation time displays that none of the high-end ML algorithms that produce accurate 
results have an advantage concerning computational time for this dataset. However, the computational time can depend based on the 
size of the dataset used and the computational power available to the modeler. 

3.2.6. Comparison with previous studies 
The results obtained on applying the algorithms are compared with previous studies, which have applied the respective algorithms 

and are presented in Table 2. It is clear from the comparison that the less complex computation models provide better results than Si 
et al. (2020) but are still underfitting. On the contrary, the high-end ML algorithms produce highly accurate results in this study, 
similar to the previous studies. Differences in hyperparameter optimization technique and train test split ratio could be the reason for 
variation in the performance of the algorithms compared to Si et al. (2020). The primary criteria that affect the algorithms’ perfor-
mance are correct parameters for the respective algorithms and the selection of essential variables to achieve the best results. We 
acknowledge that this study applied the algorithms on a particular dataset measured at a specific location. It would be interesting to 
investigate these algorithms’ performance for multi-location and seasonal datasets and compare their performance, which will be 
conducted in future studies. 

4. Conclusion 

Nine machine learning (ML) regression algorithms have been examined to calibrate low-cost sensors (LCS). This was demonstrated 
on the dataset collected from a Plantower PMS 5003 LCS and Thermal Fisher Scientific SHARP model 5030 as a reference instrument. 
Multiple Linear (MLR), Lasso (L1) and Ridge (L2) regression models giving the same result and are underfitting the data while the 
Regression Tree (RT) is overfitting. Support Vector Regression (SVR) and Multilayer Perceptron (MLP) are giving good results 
compared to MLR, L1 and L2 but can be improved with increased computational capability. K- Nearest Neighbour (kNN), Random 
Forest (RF) and Gradient Boosting (GB) provide highly accurate results. kNN, RF and GB have the best performance out of all the 

Table 2 
Comparison with previous studies.  

Model References R2 MSE MAE 

MLR Johnson et al. (2018) 0.44 10.98 – 
Badura et al. (2019) 0.85 19.68 – 
Si et al. (2020) 0.6 21.61 3.09 
Wang et al. (2020) 0.76 47.33 – 
This study 0.77 7 2.02 

L2 Johnson et al. (2018) 0.45 10.78 – 
This study 0.77 7 2.02 

SVR Loh and Choi (2019) 0.76 31.36 – 
Wang et al. (2020) 0.94 27.3 – 
This study 0.96 1.29 0.66 

kNN Loh and Choi (2019) 0.78 29.16 – 
This study 0.98 0.5 0.31 

MLP/ANN Badura et al. (2019) 0.79 26.62 – 
Si et al. (2020) 0.67 17.61 2.63 
This study 0.87 4.13 1.54 

RT Wijeratne et al. (2019) 0.99 – – 
This study 0.98 0.61 0.22 

RF Loh and Choi (2019) 0.8 27.04 – 
Wang et al. (2019) 0.98 – – 
Wang et al. (2020) 0.94 10.34 – 
This study 0.98 0.49 0.4 

GB Johnson et al. (2018) 0.72 5.51 – 
Loh and Choi (2019) 0.82 24.5 – 
Si et al. (2020) 0.72 15.26 2.38 
This study 0.99 0.45 0.29  
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algorithms with train scores of 0.99 and test scores of 0.97, 0.96 and 0.95 respectively. The overall evaluation and comparison 
demonstrate that kNN, RF and GB are the best-suited models for the calibration of LCS. 
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